
Simplifying Programming - 
Beginner
This material was developed to assist beginners in their programming learning journey. It covers everything 
from basic concepts to creating interactive web pages using HTML, CSS, and JavaScript. No matter where you're 
starting from, this guide is designed to make programming accessible and straightforward, helping you build a 
solid foundation for your career in technology. Get ready to dive into this world and take your first steps 
as a web developer!

by Júlia Bacchi

https://gamma.app


Initial Tips

1 Problem-Solving
A crucial skill is being able to solve problems 
independently. Before asking for help, try to 
understand the error or challenge on your own. 
Review the code, experiment with different 
solutions, and use documentation to find 
answers. This helps strengthen your problem-
solving ability and makes you a more confident 
programmer.

2 Support Resources
Take advantage of valuable resources from sites 
like MDN (Mozilla Developer Network) and 
W3Schools to find programming content and 
information. Explore their resources to solve 
doubts and deepen your knowledge. Don’t 
hesitate to use them!

3 Constant Practice
It’s not enough to just watch content or read 
about programming; you need to apply what you 
learn! When you learn a new concept or 
technique, replicate it in your own project, 
even if it’s simple. Constant practice helps 
solidify knowledge and develop your skills.

4 Don’t Get Discouraged
It’s normal to feel frustrated while learning 
to program. Remember that everyone goes through 
this. When you hit a wall, take a break, take a 
deep breath, and look for video tutorials or 
online forums. Seeing someone explain or solve 
a problem can make all the difference.

https://gamma.app


Introduction to Programming 
Languages
When you start learning programming, the first step is usually to become familiar with markup and styling 
languages, HTML and CSS. But what exactly are these languages?

HTML (HyperText Markup Language)

HTML is the markup language used to create the structure of a web page. Think of HTML as the skeleton of a 
page: it defines the basic layout and the elements you see on a screen, such as headings, paragraphs, images, 
and links. Each of these elements is represented by tags in the HTML code, which organize and structure the 
content.

CSS (Cascading Style Sheets)

CSS is the language used to define the visual appearance of web pages. If HTML is the skeleton, CSS is the 
skin and clothes: it allows you to style the elements created with HTML, controlling colors, fonts, spacing, 
and overall layout. With CSS, you can transform a simple page into something visually appealing and 
responsive, adjusting the design for different devices and screen sizes.

Where to Start

Starting with HTML and CSS is a great way to understand the fundamentals of the web. These languages 
are relatively easy to learn, and their effects are immediately visible in the browser, which makes 
learning motivating. With HTML, you create the foundation; with CSS, you bring the page to life. 
Together, they form the cornerstone for any web developer.

https://gamma.app


VS Code: Your Development 
Environment
Visual Studio Code (VS Code) is a powerful code editor widely used by developers around the world. It is 
known for its versatility and ease of use, making it an excellent choice for both beginners and 
professionals. In this section, you will learn how to set up and use VS Code to optimize your workflow and 
code effectively.

Getting Started

1

Download
Download VS Code from 
code.visualstudio.com for the 
version compatible with your 
operating system and follow the 
initial setup instructions.

2

Creating the Project 
On your computer, create a new 
folder where you will store the 
files for your new project.

In VS Code, go to File and 
locate the created folder.

3

How to Start
The project should be opened in 
its entirety in VS Code, as 
individual files do not provide 
a complete view. By opening the 
project folder, all files and 
resources will be accessible.

Understanding the Environment

Explorer: In the left sidebar, the Explorer displays all the files and folders in your project, allowing 
you to easily navigate between them.

Editor: This is the main working area. Each open file will appear in a tab at the top.

Integrated Terminal: VS Code includes a terminal for running commands directly within the editor 
interface. Access it via View > Terminal.

Creating the Files

1

First File
To start an HTML document, 
create a file in the Explorer 
and name it index.html. For the 
basic HTML structure, type ! (or 
html:5) and press Enter. The 
essential tags will be filled in 
automatically.

2

Subfolders
You can include subfolders such 
as styles for CSS and JavaScript 
files, and images to organize 
and include all images for your 
project.

3

Previewing
To open the HTML file in a 
browser, locate index.html in 
the project folder, or double-
click it in VS Code. Now you're 
all set to start coding and 
tracking your progress!

Important!

Save regularly after each modification! This practice helps prevent loss of progress and is 
essential for keeping your work organized and efficient. After saving, return to the browser and 
refresh the page: This will ensure that the changes made in the code appear on the web.

http://code.visualstudio.com/
https://gamma.app


Online Code Editors
Don’t want to install an editor on your computer?
Try online tools like CodeSandbox! You can write, test, and share code directly in your browser. At every 
stage of your programming journey, tools like this provide a convenient and accessible way to experiment with 
projects without needing to set up a local environment. They are especially useful for quick prototyping and 
real-time collaboration with other developers.

https://gamma.app


Commands and Shortcuts
Check out some of the amazing functionalities in the world of coding!

These shortcuts are practical and help improve efficiency while coding, especially for beginners. Integrating 
them into your workflow can make a significant difference in productivity.

Save and View

Save File: Press Ctrl + S (Windows/Linux) or Command + S (macOS) to save the file you’re editing. This 
ensures that all changes are recorded on disk.

Refresh Page: After saving changes to your code, press Ctrl + R (Windows/Linux) or Command + R (macOS) to 
refresh the page in the browser and view the updates.

HTML Structure

Basic Structure: Type ! and press Enter, or html:5 and press Enter.

Navigation and Editing in VS Code

Search for Files and Commands: Use Ctrl + P (Windows/Linux) or Command + P (macOS) to open the quick 
search bar and find files or execute commands.

Global Search: To search for a word or phrase throughout the project, use Ctrl + Shift + F (Windows/Linux) 
or Command + Shift + F (macOS).

Switch Between Open Files: Use Ctrl + Tab (Windows/Linux) or Command + Tab (macOS) to switch between open 
files in VS Code.

Development Tools

Inspect Elements: Use Ctrl + Shift + I (Windows/Linux) or Command + Option + I (macOS) to open the 
developer tools in the browser and inspect the HTML and CSS structure of the page.

https://gamma.app


<h1>Hello, World!</h1>
This message is traditionally the first step in any coding journey. 
It represents the first functional code and marks the beginning of 
your adventure in technology.

This is a basic and important exercise, as it is a way to test your 
development environment, ensuring that everything is set up 
correctly.

Moreover, it’s a simple reminder that great journeys begin with small 
steps.

https://gamma.app


HTML: Structuring Your Page
Understanding HTML structure is fundamental for any web developer. HTML is the foundation of all web pages, 
defining how content is organized and presented. When you understand the structure, you can create more 
organized, accessible, and search engine optimized pages. Additionally, a good structure makes code 
maintenance and collaboration easier, ensuring that other developers can understand and work with your code 
effortlessly. In summary, mastering HTML is the first step toward creating functional and efficient websites.

Basic Structure of HTML

Code Description

<!DOCTYPE html> Document type declaration. Informs the browser 
that the document is HTML5.

<html> Root element. Contains all the content of the 
page.

<head> Head of the document. Includes information about 
the document, such as the title and links to CSS 
files.

<title> Within the <head>. Defines the page title (appears 
in the browser tab).

<meta charset="UTF-8"> Within the <head>. Defines the character encoding 
for the document.

<body> Body of the document. Contains the visible content 
of the page, such as text, images, and links.

<h1>, <h2>, <h3>, etc. Headings of different levels.

<p> Defines a paragraph of text.

<a href="URL" target="_blank"> Creates an external link to other pages. The 
target attribute makes it open in a new tab.

<a href="#section">Ir para a seção</a> For navigating within the same page.

<img src="URL" alt="Descrição"> Within the <body>. Adds an image.

Code Example

<!DOCTYPE html>
<html>
<head>
    <meta charset="UTF-8">
    <title>My Page</title>
</head>
<body>
    <h1>Welcome to HTML!</h1>
    <p>This is a paragraph of text.</p>
    <a href="https://www.example.com" target="_blank">Visit our site</a>
    <img src="image.jpg" alt="Image Description">
</body>
</html>

Text Formatting Tips

Italic: <em>SheCodes Workshops</em>

Bold: <strong>SheCodes Workshops</strong>

Line Break: Welcome to my website<br /> We hope you enjoy your stay

Section Separator: Welcome to my website<hr /> Discover latest updates below

https://gamma.app


HTML Semantics

This means using elements that clearly describe the purpose of the content they enclose. When used correctly, 
these elements clearly indicate the function of sections within a page. Using semantic tags improves 
accessibility, makes the code easier for other developers to understand, and helps search engines better 
index the content.

Semantic Elements
What are the basics?

<header> for the header of a page.

<nav> for a section of navigation links.

<section> for grouping related content.

<article> for independent content, such as a blog post.

<footer> for the footer of the page.

<aside>

This element may not be used as frequently, 
but it is part of semantic HTML and can be 
useful in specific contexts, such as 
highlighting information related to the main 
content, a sidebar with links, or citations.

Here’s how to structure this in code

<header>
  <h1>My Website</h1>
</header>
<nav>
  <ul>
   <li><a href="#home">Home</a></li>
   <li><a href="#about">About</a></li>
  </ul>
</nav>
<main>
  <p>Main content of the page.</p>
</main>
<footer>
  <p>&copy; 2024 My Website</p> </footer>

https://gamma.app


Grouping with <div>

The <div> tag is one of the most versatile in HTML, primarily used for grouping elements and creating 
sections on a web page. Although it does not add style or behavior on its own, it serves as a container that 
can be styled with CSS and manipulated later.

How to Use

Grouping Elements: Group blocks of content, such as texts, images, and other elements.

Creating Layouts: Build structured layouts using techniques like flexbox and grid.

Applying Styles: Add classes or IDs to the <div> to apply specific styles.

Tips!

Organization: Use <div> to organize your code into logical sections, making maintenance and understanding 
easier.

Semantics: When possible, use more semantic HTML5 tags, such as <header>, <section>, and <footer>, to make 
content more accessible and improve SEO (Search Engine Optimization).

https://gamma.app


Incorporating Images

Images enrich web content, making it more engaging and informative. Use the <img> tag to insert images into 
your pages.

Images not only enhance web content, making it more attractive and informative, but they can also be adjusted 
and optimized to improve user experience.

Understanding the 
Attributes
To insert an image, use the src 
(source) attribute to specify the 
image path. The alt (alternative 
text) attribute provides an 
alternative description for the 
image, which is important for 
accessibility.

Example:

<img src="path/to/image.jpg" 
alt="Image Description">

Adjusting Size
The size of the image can be 
controlled using the width and 
height attributes, adjusting the 
values as needed. It is considered 
best practice to separate style 
(CSS) from structure (HTML), as it 
makes the code more organized, 
easier to maintain, and allows for 
global adjustments more easily.

Example:

.image {
max-width: 100%; height: 
auto;
}

Visual Elements
For vector images, consider using 
the SVG format. It is scalable and 
maintains quality at any size. 
Icons are also widely used to 
guide users intuitively. A common 
example is the Font Awesome 
library, which provides icons for 
social media, tools, actions, and 
more.

Example:

<i class="fab fa-instagram">
</i>

Lists, Tables, and Forms

Lists
Ordered Lists (<ol>): Create a 
numbered list.

Unordered Lists (<ul>): Create 
a list with bullet points.

List Items (<li>): Define the 
items within lists.

Example:

<ul>
 <li>Item 1</li>
 <li>Item 2</li>
</ul>

Tables
Table Elements (<table>, <tr>, 
<td>, <th>): Create tables 
with rows and columns.

Example:

<table>
 <tr>
  <th>Header 1</th>
  <th>Header 2</th>
 </tr>
 <tr>
  <td>Cell 1</td>
  <td>Cell 2</td>
  </tr>
</table>

Forms
Form (<form>): Contains 
elements for data collection.

Input Fields (<input>, 
<textarea>, <select>): Used to 
receive information.

Buttons (<button>, <input 
type="submit">): To submit the 
form.

Example:

<form action="/submit"> 
<label 
for="name">Name:
</label>

<input type="text" 
id="name" 
name="name">

<input type="submit" 
value="Send"> </form>

https://gamma.app


CSS: Styling Your Page
As we discussed earlier, CSS is the language used to style HTML elements. Now that we understand the basic 
structure of a page, let's explore various CSS properties to create visually appealing and attractive web 
pages.

How to apply CSS to an HTML Document

The two main ways to apply styles to your project are: Internal CSS and External CSS.

Adding Internal CSS to HTML: Directly in the HTML, use the <style> tag within the <head> 
section. This is useful for styles that are specific to a single page and do not need to be 
reused on other pages.

1.

Adding External CSS: The CSS file needs to be linked to the HTML. This is done using the <link 
rel="stylesheet" href="style.css" /> tag within the <head> section of your HTML document. The 
href attribute defines the path to the file, so it should match the name of your CSS file.

2.

Note!

Both approaches have their uses and benefits, but generally, external CSS is considered best 
practice due to its ability to keep the code cleaner and more organized, facilitate maintenance, 
and improve the performance of your project.

Selectors: Classes and IDs

To apply styles efficiently, we use selectors that help identify which HTML elements should receive certain 
styles. Two of the most common selectors are classes and IDs. While both are used to apply styles, they have 
distinct purposes and rules of use:

Classes

Allow you to apply styles to multiple HTML elements 
at once. They are very useful when you want to style 
multiple elements similarly or apply a specific set 
of styles to different parts of the page.

Definition: Classes are defined in CSS with a 
period (.) followed by the class name.

Usage in HTML: To use a class in an HTML 
element, you should assign it to the class 
attribute of that element.

Example:

In HTML:

<p class="description">This is an example of 
how to use classes in CSS to style different 
elements.</p>
<p class="description">Classes allow you to 
apply common styles to multiple elements.</p>

In CSS:

.description {
    color: #666;
    font-size: 1.2em;
    line-height: 1.6;
    margin-bottom: 15px;
}

IDs

Are used to identify a single element on the page. 
They are ideal when you need to apply styles to a 
specific element that does not repeat anywhere else 
on the page.

Definition: IDs are defined in CSS with a hash 
(#) followed by the ID name.

Usage in HTML: To use an ID, you should assign 
it to the id attribute of the HTML element.

Example:

In HTML:

<header id="header">
    Welcome to My Website
</header>

In CSS:

#header {
    background-color: blue;
    color: white;
    padding: 20px;
    text-align: center;
}

https://gamma.app


Customizing Text and Colors

Text Options
Customize text with properties such as alignment, 
size, weight, font family, and decoration to 
improve readability and style.

Example:

text-align: left | right | center | justify | initial 
| inherit;

Font-size: Sets the size of the font (px)

Font-weight: Defines the thickness of the font 
(numbers 100, 200 or normal | bold | bolder 
| lighter)

Font-family: Georgia, serif;

text-decoration: underline;

 Color Variations
Explore different ways to define colors. You can 
apply colors to various elements such as 
backgrounds, text, icons, and even images.

Example:

Background Color:

Solid Color: background: green;

Gradient: background: linear-

gradient(#e66465, #9198e5);

Text Color:

Named Color: color: blueviolet;

Hexadecimal: color: #00ff00;

RGB: color: rgb(135, 93, 241);

RGBA (with transparency): color: rgba(135, 

93, 241, 0.5);

<table>
 <tr>
  <th>Header 1</th>
  <th>Header 2</th>
 </tr>
 <tr>
  <td>Cell 1</td>
  <td>Cell 2</td>
  </tr>
</table>

https://gamma.app


Fundamentals of CSS

Among the essential fundamentals of CSS are element layout and positioning, spacing techniques, dimension 
control, and manipulation of images and backgrounds. These concepts are important for creating responsive and 
organized designs, providing a solid foundation for those starting in web development.

Layout and Positioning

Flexbox
A simplified approach to creating layouts that 
adjust to the available space. It’s great for 
creating one-dimensional layouts (row or 
column). Using properties like flex-direction, 
justify-content, and align-items, you can 
control the distribution and alignment of 
elements.

Grid
A two-dimensional system that allows for more 
complex layouts. It uses rows and columns to 
organize elements, providing precise control 
over where elements are positioned. Key 
properties include grid-template-columns, 
grid-template-rows, and grid-area.

Position
Element positioning: static, relative, 
absolute, fixed, and sticky.

Display
Element display types: block, inline, inline-
block, none, etc.

Spacing

Margin
External space around an element, creating 
distance between adjacent elements.

Border
Adds borders around an element. Properties 
include border-width, border-style, e border-
color.

Border-Radius
Rounds the corners of borders, allowing for 
elements with softened or circular corners.

Padding
Internal space around the content of an 
element, separating it from the element's own 
borders.

Dimensions

Width
Width: Defines the width of an element.

Max-width and Min-width: Limit the maximum or 
minimum width an element can have

Height
Height: Defines the height of an element.

Max-height and Min-height: Limit the maximum 
or minimum height an element can have.

Backgrounds and Objects

Background Image
Allows you to add a background image to any 
element. The background-image property sets 
the path to the image to be used.

Background properties
Background-Repeat: Controls if and how the 
background image is repeated (repeat, no-
repeat, repeat-x, repeat-y).

Background-Position: Defines the initial 
position of the background image within the 
element.

Background-Size: Controls the size of the 
background image (cover, contain, or specific 
values in units).

Background-Attachment: Determines if the 
background should scroll with the content 
(scroll) or remain fixed (fixed).

Object-fit e Object-Position
Object-Fit: Adjusts how an image or video 
should be fitted inside the container (fill, 
contain, cover, none, scale-down).

Object-Position: Defines the position of the 
image or video within the container, 
especially when it is not fully covering the 
container.

https://gamma.app


JavaScript: Interactivity and Dynamism
JavaScript is the programming language that adds interactivity and dynamism to web pages. Understanding the 
basics allows you to create more engaging and interactive web experiences.

Introduction to JavaScript
Considered one of the core web technologies, JavaScript is used alongside HTML and CSS to create dynamic 
pages, including animations, user event responses, form validation, and much more.

How to include JavaScript in an HTML Page

To add JavaScript to a web page, you need to include it in your HTML file. This can be done in two 
main ways:

Internal JavaScript: Directly within the HTML file using the <script> tag. This code runs when 
the page loads.

1.

External JavaScript: In a separate file with a .js extension, usually placed in a source 
subfolder. Include it in your HTML page using the <script src="script.js"></script> tag inside 
the <body>, after all the content.

2.

How to Test?

In the script.js file, write console.log('Hello, World!');

Example:

In HTML

<!DOCTYPE html>
<html lang="pt-br">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>External JavaScript Example</title>
</head>
<body>
    <h1>Hello, World!</h1>
    <script src="script.js"></script> <!-- Includes the external JavaScript file -->
</body>
</html>

In script.js

console.log('External JavaScript is working!');

Testing directly in the Browser

You can open the console by pressing F12 or Ctrl+Shift+I (Windows/Linux) or Cmd+Option+I (Mac), then 
selecting the "Console" tab. Here, you can type JavaScript code and see the results instantly. It's a great 
way to experiment with small code snippets.

https://gamma.app


Basic JavaScript Concepts

1Variables
Variables store data in JavaScript and can 

hold different types of data such as 
numbers, strings, booleans, objects, and 

arrays.
2 Operators

Operators are symbols that perform 
operations on variables and values, 
including arithmetic, comparison, and 
logical operations.3Functions

Functions are reusable blocks of code that 
perform a specific task. They help organize 

code and avoid repetition.
4 Conditional Structures

Conditional structures allow you to execute 
code based on conditions. If / Else: 
Executes a block of code if the condition 
is true or false.5Loops

Allow you to repeat an operation multiple 
times. For Loop: Repeats a block of code a 

specific number of times. While Loop: 
Repeats a block of code while a condition 

is true.
6 Selectors

Selectors are used to select HTML elements 
in JavaScript and manipulate them. For 
example, changing the text of an element.

7Events
Events are actions that occur on a web 

page, such as clicking a button or moving 
the mouse. JavaScript allows you to respond 
to these events and create interactivity. 8 Console.log

This function displays a message in the 
browser's console. It's a useful debugging 
tool for checking variable values and the 
flow of code.

https://gamma.app


Applying the Concepts

In this section, we'll explore fundamental concepts that will bring your websites and applications to life, 
understanding how this language works and how to use it in your project.

Variables and Data Types

Variables
Variables store values that can be used and 
modified throughout the code. There are three 
keywords for declaring variables:

var: Declares a variable with either global or 
local scope, but it can cause confusion with its 
scope.

let: Declares a variable with block scope, which 
is safer and recommended.

const: Declares a variable that cannot be 
reassigned, meaning its value cannot change.

Data Types
Number: Numeric values, such as 42 or 3.14.

String: Represents text, such as "Hello, world!".

Boolean: Represents true or false values, such as 
true or false.

let age = 30; // Number

let name = "Ana"; // String

let isStudent = true; // Boolean

Operators

Arithmetic

let a = 5 + 3; // 8 let 
b = 10 % 3; // 1

Assignment

let x = 10; x += 5; // 
x é agora 15

Comparison

let isEqual = (5 === 
5); // true

let isNotEqual = (5 !== 
3); // true

Logical

let a = true && false; 
// false

let b = true || false; 
// true

Functions: Definition and How to Apply

Functions are blocks of code designed to perform specific tasks and can be reused in different parts of your 
program. They help organize code and avoid repetition.

function greet(name) {
return Hello, ${name}!;
}
console.log(greet("Alice")); // Hello, Alice!

Important to Know

Functions can accept parameters, which are values provided when the function is called, and return results, 
which are values produced after the function executes.

See here!

function add(a, b) {
  return a + b;
}
console.log(add(5, 3)); // 8

https://gamma.app


More JavaScript Features

You will learn to use control structures to create dynamic logic, manipulate the DOM (Document Object Model) 
to transform and interact with your page’s content, and work with events to make your applications 
interactive and responsive. Let’s start turning your ideas into reality with the power of JavaScript!

Control Structures

Conditionals Loops

if: Executes a block of code if the condition is 
true.

else: Executes a block of code if the if condition 
is false.

else if: Adds additional conditions.

switch: Replaces multiple if and else for value 
comparison.

Example:

let score = 85;

if (score > 90) {
  console.log("Excellent");
} else if (score > 75) {
  console.log("Bom");
} else {
  console.log("Need to improve");
}

for: Iterates over a block of code a fixed number 
of times.

while: Iterates while the condition is true.

do...while: Iterates at least once, then continues 
while the condition is true.

Example:

for (let i = 0; i < 5; i++) {
  console.log(i); // 0, 1, 2, 3, 4
}
let count = 0;
while (count < 5) {
  console.log(count); // 0, 1, 2, 3, 4
  count++;
}

DOM Manipulation

What is DOM?

The Document Object Model (DOM) is an interface that represents the structure of an HTML or XML document as a 
tree of objects. Each HTML element (like <div>, <h1>, <p>, etc.) is represented as a node in the DOM tree. 
This allows you, through JavaScript, to access, manipulate, and modify the content and structure of the web 
page dynamically.

Selecting and Modifying Elements

Example:

let header = document.querySelector("h1");
header.textContent = "New Title";

Explanation:

document.querySelector("h1"): This method is used to select the first <h1> element that appears in the 
document. document represents the whole page, and querySelector allows you to select elements using CSS 
selectors.

1.

header.textContent = "New Title";: Here we are changing the text content of the <h1> element that was 
selected. The text within this element is replaced by "New Title". In other words, if the title was 
previously "Welcome", it will now be "New Title".

2.

Events

Listening and responding to Events

In JavaScript, you can set up code to "listen" for events, such as clicks, key presses, mouse movements, and 
more. When the event occurs, a function is automatically executed in response.

Example:

document.querySelector("#button").addEventListener("click", function() { alert("Button clicked!");
});

Explanation:

document.querySelector("#button"): Here, we are selecting an element with the ID "button". The # in the 
selector indicates that we are targeting a specific ID.

1.

.addEventListener("click", function() {...}): This method addEventListener is used to "listen" for a 
specific type of event on an element. In this case, we are listening for the "click" event (when the 
button is clicked).

2.

function() { alert("Button clicked!"); }: This is the function that will be executed when the click event 
occurs. In this example, it shows an alert with the message "Button clicked!". You can replace this 
function with any action you want to occur when the button is clicked.

3.

https://gamma.app


These are basic yet very powerful examples that will open the 
doors for you to create and control the behavior of your web 
pages!

 Por Júlia Bacchi

Congratulations on reaching this point!

Now that you’ve mastered the fundamentals of HTML, CSS, and JavaScript, you’re ready to take the 
next steps and dive into more advanced concepts that will elevate your development skills.

Download

 

https://portfolio-juliabacchi.netlify.app/
https://cdn.gamma.app/aagncy473hl5dkf/aa4c49da6cbb462493ff241453c98028/original/Descomplicando-a-Programacao-Iniciante.pdf
https://gamma.app


What’s Next…

The next module will help you create even more complex and interactive projects, which can open up new 
opportunities in your career.

Simplifying Programming - 
Intermediate
A bit about what you’ll learn!

Deepen your knowledge of HTML, CSS, and JavaScript.

Discover new elements and techniques to improve your website's accessibility.

Explore Flexbox, Grid, animations, and how to create responsive layouts that work perfectly 
on any device.

Learn how to manipulate APIs, use frameworks, and create more interactive and engaging user 
experiences.

Build a real project from scratch to enhance your practical skills!

Keep practicing!

 

Want to continue!

If you enjoyed the content and found it helpful in simplifying programming, 
follow the next module guide and be a part of this project!

© 2024 Júlia Bacchi. All rights reserved.

https://wa.me/48991779743?text=Hi%20
https://gamma.app

